Internet of Battlefield Things

COLLABORATIVE RESEARCH ALLIANCE

IoBT CRA RMB
Way Ahead

Ananthram Swami, Chief Scientist
DEVCOM, Army Research Laboratory

Tarek Abdelzaher, Consortium Manager
University of Illinois Urbana-Champaign

Maggie Wigness, Alliance Manager
DEVCOM, Army Research Laboratory

March 18, 2022
Towards Efficient and Resilient Tactical Edge Analytics for the Sensing-to-Decision (MDO Effect) Loop

**Curriculum Overview**

**Thematic Thrusts**

Aligned with Value Proposition and Application (Year 4-5)

- **Threat Efficiency (Time is a Weapon)**
  - Enable efficient, real-time synthesis, communication, and data processing in large-scale, dynamic networks

- **Resilience (of Decision Loop Analytics)**
  - Offer strong assurances of correctness in the face of adversarial disruption

- **Tailored Intelligence (at the Point of Need)**
  - Tailor multimodal services for the distributed tactical edge

**Research Areas (Year 1-3)**

- Agile Synthesis of Large-Scale IoBTs
- Reflexes for Self-aware IoBTs
- Intelligent Battlefield Services

**Thematic Thrusts**

- **1. Assess & Detect**
- **2. Identify**
- **3. Locate & Track**
- **4. Aggregate & Synthesis**
- **5. Distribute**
- **6. Decide**
- **7. Effect / Actuate**

Developed in collaboration with FCC: (Maj Adam Taliaferro)

## MOVING THE NEEDLE

<table>
<thead>
<tr>
<th>Prior to IoBT CRA (2017)</th>
<th>With IoBT CRA (Today)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Edge Efficiency</strong></td>
<td><strong>Efficient edge</strong> (faster sensing-to-effect loop)</td>
</tr>
<tr>
<td>New more accurate but <strong>heavyweight machine analytics</strong></td>
<td>• Theory of rapid network synthesis for rich, expressive classes of problems with optimality guarantees; <strong>highly scalable</strong></td>
</tr>
<tr>
<td>• <strong>Edge performance limitations</strong> running (neural-network-based) inference on embedded hardware</td>
<td>• 10x-100x more efficient edge-AI for the sensor-to-effect pipeline; <strong>new compression bounds</strong> for neural models</td>
</tr>
<tr>
<td>• Network <strong>synthesis is slow</strong> and limited in problem space</td>
<td>• <strong>Quickest change detection</strong></td>
</tr>
<tr>
<td><strong>Resiliency (of Decision Loop Analytics)</strong></td>
<td>Foundations of <strong>tactical resiliency</strong> and risk prediction</td>
</tr>
<tr>
<td>Data attacks on machine analytics. “Cat and Mouse” game between attacks and defenses</td>
<td>• Accuracy <strong>correctly predicted even for adversarial inputs</strong></td>
</tr>
<tr>
<td>• Neural network <strong>vulnerabilities</strong></td>
<td>• Sensor attack <strong>detection 10x faster</strong>. New decentralized algorithms for different network topologies</td>
</tr>
<tr>
<td>• Sensor attack <strong>detection too slow</strong> for a real-time implementation; not always possible in a decentralized manner</td>
<td>• Confidence intervals for risk relevant statistics (tail of distribution) to <strong>bound worst-case outcomes</strong> in off-policy evaluation</td>
</tr>
<tr>
<td>• Off-policy <strong>confidence in mean behavior only</strong></td>
<td><strong>Tailored Intelligence at the Point of Need</strong></td>
</tr>
<tr>
<td><strong>Stovepiped intelligent application pipelines</strong> (e.g., Amazon Echo, Autonomous cars, etc)</td>
<td><strong>Tailored services for the distributed edge</strong></td>
</tr>
<tr>
<td>• Stovepiped processing pipelines and growing diversity of hardware</td>
<td>• Distributed <strong>heterogeneous sensing and computing</strong>; adapts to wireless and resource dynamics</td>
</tr>
<tr>
<td>• Machine learning inference on relatively <strong>resource-rich computing</strong></td>
<td>• Multimodal sensing and <strong>opportunistic exploitation</strong> (e.g., use of radios as sensors)</td>
</tr>
<tr>
<td>• <strong>Limited AI uncertainty</strong> models for the edge</td>
<td>• Theory for <strong>quantifying uncertainty</strong> in deep learning</td>
</tr>
</tbody>
</table>
Operational Hypotheses

IoBT will help commanders distill prioritized information from vast amounts of data faster for decision making by providing efficient, real-time processing.

IoBT capabilities that provide robustness, resiliency, and adaptive services in the face of adversarial disruption and deception in conjunction with camouflaged sensing and communication, are essential to maintain commander confidence in data and reduce risk.

IoBT will increase situation awareness tempo by exploiting ubiquitous, multimodal sensors, unconventional sensing, and edge computation in the operating environment.

IoBT, with rigorous testing and training, will enable trust despite a contested and dynamic environment by providing performance guarantees, uncertainty quantification and the ability to explain.

Key Takeaways

Potential High Impact Research Priorities:

- **Efficiency at scale** in the presence of vast amounts of data
  - Semantic compression; processing at the edge
  - Prioritization and filtering of data push
  - Optimal network usage and network inference
- **Reconfigurable and adaptable algorithms** to induce flexibility (flexibility empowers creative alternatives)
  - Dynamic tuning to changing priorities/objectives
  - Resilience, safety, and risk mitigation (a distribution-tail challenge)
  - Fast optimization
- Information verification by exploitation of multi-modal and multi-vantage sensing for joint inference
  - Hybrid analytics – ML and rule-based; multiple time-scales
- **Uncertainty quantification** of network or analytics composition (in the presence of open/commercial sources)
Phase I

Guidance: Focused Excursion (DEVCOM + FCC + IoBT Research SMEs)

Operational Gaps/Concepts

Technical Opportunities

Phase II

Edge Efficiency

Resiliency (of Decision Loop Analytics)

Tailored Intelligence at the Point of Need

Way Ahead

Scale

Efficiently managing (spatial and temporal) scale
- Optimal network usage/sharing
- Prioritization and filtering to meet CCIRs
- Efficient uncertainty quantification

Dynamics

Reconfigurable and adaptable systems to induce flexibility (perpetually-transient systems)
- Processing, communication, and synthesis strategies to adopt to evolving objectives
- Foundations of resiliency, safety, risk analysis
- Fast multi-objective optimization

Coordination

Tactical coordination (for the heterogeneous, multimodal edge)
- Flexible heterogeneous multi-vantage sensing
- Multi-modal confirmation/verification
- Distributed hybrid ML at multiple timescales
FUTURE ROADMAP: THE SCALE GAP
EFFICIENTLY MANAGING SCALE OF THE IOBT

**Capability:** Efficient management and control of large-scale data-rich IoBT systems to support ubiquitous sensing, processing, communication, and prioritization

**Gap:** Cannot offer long-lasting large-scale distributed edge AI capabilities on resource-limited devices (can’t last whole mission)

**Approach:** Hyper-efficiency (an additional 10x-100x reduction in resource consumption) via a combination of innovations

- **Prioritize early:** Enhance prioritization and semantic compression of information from vast amounts of sensor data; Push mission-based filtering and prioritization closer to the sensor
- **Break functional barriers:** Optimal network usage and sharing of computational resources; A unified framework for joint sensing and communication
- **Uncertainty quantification:** Extend confidence estimation to multi-modal/multi-vantage resources and the presence of mostly non-sympathetic (e.g., commercial or open) sources
FUTURE ROADMAP: THE DYNAMICS GAP
RECONFIGURABLE AND ADAPTABLE SYSTEMS TO
INDUCE FLEXIBILITY

Capability: Enhanced resiliency & speed of operations in complex highly dynamic
adversarial (DDIL) environment

Gap: Lack of theoretical understanding of resiliency, risk mitigation and optimization
in persistently transient systems

Approach: New theoretical foundations for optimization, resilience, and risk analysis in
persistently transient distributed systems, with a focus on the tactical edge
  • Understanding tunable system parameters; dynamic network synthesis, processing and
    communication strategies in the presence of fast dynamics and adapting to different and
    quickly evolving objectives
  • Foundations of resiliency, safety, risk-analysis and optimization in persistently transient
    (ultra fast-changing) systems
  • Fast mixed (discrete-continuous) distributed optimization across latency, energy and
    accuracy, computing, sensing and communication devices and placements at scale
FUTURE ROADMAP: THE COORDINATION GAP
TACTICAL EDGE COORDINATION

Capability: Increased situational awareness & information validation to improve confidence

Gap: Current (neural-network-based) analytics do not offer plug-and-play functionality with respect to highly heterogeneous underlying hardware and sensing modalities, and do not compose well across different time-scales

Approach: Solutions for plug-and-play functionality, coordination among entities, and compositionality at the tactical edge
- Flexible exploitation of heterogeneous and multi-vantage sensing for joint inference
- Multi-modal verification to improve prediction confidence
- Distributed hybrid (rule-based plus data-based) ML to incorporate extant knowledge; composability at multiple timescales
Notional avenues for experimental validation
(Live experiments with emulation-based augmentation for scale)
• IoBT was a new high-risk area when we started the program
  • Exciting new results and potential capabilities
• New basis and set of thrusts for IoBT, based on FE, CRA & community research, and engagement with stakeholders
• Joint integrated experimentation – being expanded
• Increasing integration within ARL enterprise
• Emerging transitions

Recommend that IoBT CRA be extended for an additional five years
Questions?

To view read-ahead material visit:
https://iobt.illinois.edu/RMB22-Readahead