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EdgeRM Objectives
• Extend distributed resource management frameworks to 

the heterogeneous IoBT domain
• Retain traditional resource management principles
• Integrate with novel resources (e.g. sensors, actuators) 
• Support heterogeneous and potentially resource-

constrained (i.e. non-Linux class) platforms 
• Build a networked system that spans NATs.
• Improve maintainability and interactivity of networked 

clusters of IoBT assets.

Approach
• Assets deploy an “agent” – a webserver client that 

connects to the EdgeRM Master to expose resources
• Embedded Agent for microcontroller-class devices
• Support Docker containers + WebAssembly modules 
• Communication via protobufs over MQTT/CoAP/HTTP
• WebAssembly Sensor Interface for device access, 

configuration + control

EdgeRM System Architecture: Agent nodes 
expose available resources to the Master to be 

offered to multiple app frameworks
Results
• Achieve unified cluster computing and 

sensor integration over devices with 128-
256KB memory + 1MB of flash.

• WebAssembly provides interactivity with 
minimal latency overhead wrt native.

• Leverages growing compute capability wrt
radio power consumption.

• We currently have a testbed at 
http://128.97.92.77:3000/ implementing two 
frameworks.
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• Design placement and profiling integrations
• Expand classes of compute achievable on 

embedded assets (ML, waveform analysis)
• Integrate system stack from visual end-user 

interface to low-level task binding + execution
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Portkey Objectives
• Develop a distributed data storage placement conducive 

to the rapid mobility of IoBT networks.
• Design a system that learns the appropriate data 

placement of key-value pairs based on access patterns.
• Provide open-source and readily-available implementation

Approach
• Formulate data placement as an online learning and 

optimization problem.
• Track client accesses to a distributed datastore cluster 

by injecting a usage profiler client-side leveraging 
lightweight sketching techniques.

• Make fast placement decisions over an intractable (NP-
hard) partitioning problem that incorporates client 
accesses and available datastore host placements.

• Evaluate over a representative dataset of varying 
workloads exhibiting wide range of access patterns.

KV Independent Placement Solver Methodology
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Solver Scalability:

Placement Optimization Problem
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Portkey System Design: Adaptive Placement 
Engine is built atop existing datastore platform

Results
• Independent placement solver with greedy 

assignment operates in polynomial time 
enabling adaptive placement that responds 
quickly to IoBT dynamics.

• Latency improvement of up to 82%
• Lightweight sketching keeps overhead to a 

minimum (e.g. 8KB for 1024-node cluster)
• Implementation is readily available at 

https://github.com/nesl/AdaptiveKVPlacement

Portkey reduces average latency by 21-82% and 
tail latency by 26-77% over existing strategies

Intuition: Given high mobility, prioritize fast 
placement over optimal, iterate to adapt

EdgeRM & Portkey: Resource Management and Adaptive 
Data Placement for Dynamic IoBTs

http://128.97.92.77:3000/
https://github.com/nesl/AdaptiveKVPlacement

