
POINT OF CONTACT:

UNCLASSIFIED // FOUO

Joseph Noor
jnoor@cs.ucla.edu
714-393-3196

EdgeRM Objectives
• Extend distributed resource management frameworks to 

the heterogeneous IoBT domain
• Retain traditional resource management principles
• Integrate with novel resources (e.g. sensors, actuators) 
• Support heterogeneous and potentially resource-

constrained (i.e. non-Linux class) platforms 
• Build a networked system that spans NATs.
• Improve maintainability and interactivity of networked 

clusters of IoBT assets.

Approach
• Assets deploy an “agent” – a webserver client that 

connects to the EdgeRM Master to expose resources
• Embedded Agent for microcontroller-class devices
• Support Docker containers + WebAssembly modules 
• Communication via protobufs over MQTT/CoAP/HTTP
• WebAssembly Sensor Interface for device access, 

configuration + control

EdgeRM System Architecture: Agent nodes 
expose available resources to the Master to be 

offered to multiple app frameworks
Results
• Achieve unified cluster computing and 

sensor integration over devices with 128-
256KB memory + 1MB of flash.

• WebAssembly provides interactivity with 
minimal latency overhead wrt native.

• Leverages growing compute capability wrt
radio power consumption.

• We currently have a testbed at 
http://128.97.92.77:3000/ implementing two 
frameworks.

Embedded Agent Overhead

WebAssembly Latency wrt Native

Increasing Compute vs Radio 
Energy TradeoffPath Forward

• Design placement and profiling integrations
• Expand classes of compute achievable on 

embedded assets (ML, waveform analysis)
• Integrate system stack from visual end-user 

interface to low-level task binding + execution

Minimal Agent 
Utilization + Power 

Overhead

Portkey Objectives
• Develop a distributed data storage placement conducive 

to the rapid mobility of IoBT networks.
• Design a system that learns the appropriate data 

placement of key-value pairs based on access patterns.
• Provide open-source and readily-available implementation

Approach
• Formulate data placement as an online learning and 

optimization problem.
• Track client accesses to a distributed datastore cluster 

by injecting a usage profiler client-side leveraging 
lightweight sketching techniques.

• Make fast placement decisions over an intractable (NP-
hard) partitioning problem that incorporates client 
accesses and available datastore host placements.

• Evaluate over a representative dataset of varying 
workloads exhibiting wide range of access patterns.

KV Independent Placement Solver Methodology

Key Access Patterns Network Distance Matrix Cost Matrix

Solver Scalability:

Placement Optimization Problem

Datastore 
Client

App Runtime

Client

Log

Datastore Node

Datastore 
Client

App Runtime

Log

Client

KV KV KV

Datastore Server

KV KV KV

Datastore Server

Migrate
Datastore Node

Key
Access

Server
Latencies

Client Access Logs

Adaptive Placement Engine

Network
Distances

Placement
Solver

Portkey System Design: Adaptive Placement 
Engine is built atop existing datastore platform

Results
• Independent placement solver with greedy 

assignment operates in polynomial time 
enabling adaptive placement that responds 
quickly to IoBT dynamics.

• Latency improvement of up to 82%
• Lightweight sketching keeps overhead to a 

minimum (e.g. 8KB for 1024-node cluster)
• Implementation is readily available at 

https://github.com/nesl/AdaptiveKVPlacement

Portkey reduces average latency by 21-82% and 
tail latency by 26-77% over existing strategies

Intuition: Given high mobility, prioritize fast 
placement over optimal, iterate to adapt

EdgeRM & Portkey: Resource Management and Adaptive 
Data Placement for Dynamic IoBTs

http://128.97.92.77:3000/
https://github.com/nesl/AdaptiveKVPlacement

