Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu, Deepesh Data, Can Karakus, Suhas Diggavi

Motivation
Communication bottlenecks in exchange of stochastic gradients for distributed training of high dimensional models over bandlimited networks

State of the Art:
1) Quantization (Q): Stochastic such as QSGD, TemGrad, etc. or deterministic such as signSGD
2) Sparsification (Comp_k): Selecting TopK or Random k elements
3) Increased Local Computations: Mini batch and local iterations

Composition of Quantizer and Sparsifier
- Step 1. Select the Top k or Random k elements of the d dimensional vector v to be transmitted
- Step 2. Quantize the sparse vector using aforementioned quantizers

Ex. 1: \[
\frac{Q_{\text{SGD}}(\text{Topk}(v))}{1 + p_{\text{k},k}} \text{ has a compression factor of } \gamma = \frac{k}{d(1 + p_{\text{k},k})} \in (0,1]
\]
Ex. 2: \[
\frac{||\text{Topk}(v)||_{1}}{k} \text{ has comp. factor } \max \{\frac{1}{d}, \frac{k}{\sqrt{d}||\text{Topk}(v)||_{2}}\}
\]

Qsparse-SGD
At time t on worker r,
- Use a composed operator \(Q_{\text{Comp}}\)
- Compress the previous error to be compensated and the new mini batch update together

\[
g^{(t)}_r \leftarrow Q_{\text{Comp}} \left(m^{(t)}_r + \eta t \nabla f(r)(x_t) \right)
\]
Send \(g^{(t)}_r\) to the master
- Master will compute \(x_{t+1} = x_t - \frac{1}{R} \sum_{r=1}^{R} g^{(t)}_r\) and broadcast to the workers.
- Store the compression error in memory\(l^{(t)}\)

\[
m^{(t)}_{t+1} \leftarrow m^{(t)}_r + \eta t \nabla f(r)(x_t) - g^{(t)}_r
\]

Synchronous Operation
Worker Node 1
Worker Node 2
Worker Node k

Qsparse-SGD: Sparse Quantized updates together with error feedback at each worker locally. Synchronization schedule same as distributed vanilla SGD

Asynchronous Operation

Theorem 3 (Non-convex). \(H \text{ must be } O(\sqrt{\gamma T}/(bR)^{1/4})\) for convergence at a rate of \(O(1/\sqrt{(bR)})\)

Theorem 4 (Strongly-convex). \(H \text{ must be } O(1/(bR)^{1/4})\) for convergence at a rate of \(O(1/bR)\)

Experiments

Multiclass logistic classifier trained on MNIST:
- Training loss vs epochs
- Plots of Training Loss.
- Training multiclass logistic classifier on MNIST dataset, \(b=8, R=15, d=7850, k=40\)
- Training ResNet-50 on ImageNet dataset, \(b=256, R=8, d=25,610,216, k=99,400\)
- We recover convergence at rates matching distributed vanilla SGD for non-convex and convex objectives with 15-20x savings in communicated bits over state-of-the-art and 1000x savings over full precision SGD

Publications